Bayesian analysis of twinning and ovulation rates using a multiple-trait threshold model and Gibbs sampling.

نویسندگان

  • C P Van Tassell
  • L D Van Vleck
  • K E Gregory
چکیده

The Multiple-Trait Gibbs Sampler for Animal Models programs were extended to allow analysis of ordered categorical data using a Bayesian threshold model. The algorithm is based on data augmentation, where a value on the unobserved underlying normally distributed variable (liability) is generated in each round of iteration for each categorical observation. The programs allow analysis of several continuous and ordered categorical traits. Categorical traits can have any number of response levels. Models can be different for each trait. The programs were used to analyze twinning and ovulation rates from a herd of cattle selected for twinning rate at the U.S. Meat Animal Research Center. Data included number of calves born at each parturition for the lifetime of a cow and number of eggs ovulated for several estrous cycles before first breeding as heifers. A total of 6,411 calvings was recorded for 2,087 cows with 83.2% single and 16.8% multiple births. A total of 19,849 ovulations was recorded for 2,332 heifers with 85.2% single and 14.8% multiple ovulations. Mean posterior estimates of heritability and fraction of variance accounted for by permanent environmental effects (PE) were .128 and .103 for twinning rate and .168 and .079 for ovulation rate. Mean posterior estimate of genetic correlation was .808, and correlation of PE effects was .517. Use of a threshold model could allow for more rapid genetic improvement of the twinning herd through improved identification and selection of genetically superior animals because of higher heritability on the underlying scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Twinning and Ovulation Rates Using a Multiple-Trait Threshold Model and Gibbs Sampling1

The Multiple-Trait Gibbs Sampler for Animal Models programs were extended to allow analysis of ordered categorical data using a Bayesian threshold model. The algorithm is based on data augmentation, where a value on the unobserved underlying normally distributed variable (liability) is generated in each round of iteration for each categorical observation. The programs allow analysis of several ...

متن کامل

Bayesian Inference of (Co) Variance Components and Genetic Parameters for Economic Traits in Iranian Holsteins via Gibbs Sampling

The aim of this study was using Bayesian approach via Gibbs sampling (GS) for estimating genetic parameters of production, reproduction and health traits in Iranian Holstein cows. Data consisted of 320666 first- lactation records of Holstein cows from 7696 sires and 260302 dams collected by the animal breeding center of Iran from year 1991 to 2010. (Co) variance components were estimated using ...

متن کامل

تحلیل بیزی فراسنجه‌های ژنتیکی صفات جفت‌ماندگی و سخت‌زایی در گاوداری فکا

The aim of this study was to estimate genetic components and parameters of retained placenta and dystocia traits in FOKA dairy farm. The non-genetic factors affecting these traits were evaluated using logistic regression implemented in GENMOD procedure of SAS 9.1 software. In order to do genetic evaluations, 5 Bayesian threshold models of repeat records and a Bayesian bivariate model were used....

متن کامل

Prediction of breeding values for twinning rate and ovulation rate with a multiple trait, repeated records animal model.

A genetic correlation near unity between ovulation rate in heifers and later twinning frequency led to consideration of using measures of ovulation rate in heifers for each estrous cycle, beginning at puberty, to increase accuracy of selection for twinning rate. An initial evaluation with a multiple trait animal model for predicting breeding values included six genetic groups: 1) selected Scand...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 76 8  شماره 

صفحات  -

تاریخ انتشار 1998